Sale!

The Design – Analysis of a Whirl Wind Propeller Simulation | ANSYS Fluent

$45.99

A propeller is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral, that, when rotated, performs an action that is similar to Archimedes’ screw. It transforms rotational power into linear thrust by acting upon a working fluid, such as water or air. The rotational motion of the blades is converted into thrust by creating a pressure difference between the two surfaces. A given mass of working fluid is accelerated in one direction and the craft moves in the opposite direction. Propeller dynamics, like those of aircraft wings, can be modeled by Bernoulli’s principle and Newton’s third law. Most marine propellers are screw propellers with helical blades rotating on a propeller shaft with an approximately horizontal axis.

In this analysis, it has been tried to simulate and analyze a whirlwind propeller using Ansys Fluent software.

Category:

The Design – Analysis of a Whirl Wind Propeller Simulation | ANSYS Fluent

A propeller is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral, that, when rotated, performs an action that is similar to Archimedes’ screw. It transforms rotational power into linear thrust by acting upon a working fluid, such as water or air. The rotational motion of the blades is converted into thrust by creating a pressure difference between the two surfaces. A given mass of working fluid is accelerated in one direction and the craft moves in the opposite direction. Propeller dynamics, like those of aircraft wings, can be modeled by Bernoulli’s principle and Newton’s third law. Most marine propellers are screw propellers with helical blades rotating on a propeller shaft with an approximately horizontal axis.

In this analysis, it has been tried to simulate and analyze a whirlwind propeller using Ansys Fluent software.

Geometry & Grid

The geometry required for this analysis was generated by Ansys Design Modeler software. The meshing required for this analysis was also generated by Ansys Meshing software. The mesh type used in this analysis is unstructured. The total number of volume properties for geometry is 2,8976e+008 mm³.

Model

In this analysis, the k-epsilon (2 equation) turbulence viscosity model is used to check the fluid flow. The standard wall function is used near the wall.

Boundary Condition

The flow of primary air input design modeler geometry for this analysis is considered as velocity magnitude and is 6 m/s. The turbulence of the design modeler is set with an intensity equal to 5 %. The turbulence viscosity ratio of the design modeler is set with a viscosity ratio of 10.

The flow output range is also considered as a pressure outlet for the flow output region and gauge pressure is equal to 0. The inner wall is also considered a Stationary Wall.

Discretization of Equations

In this analysis, high-resolution is used for the advection scheme of the basic settings. In this analysis, the first-order is used for turbulence numerics. In this analysis, the residual type of convergence criteria is RMS and the residual target of convergence criteria is 1.E-3.

The results are presented as density contours.

The Design Services

We also accept all CFD projects using ANSYS Fluent and ANSYS CFX. Our workshop has gathered experts in different engineering fields so as to ensure the quality of CFD simulations. One of our objectives is to boost the use of powerful computational fluid dynamics methods and also teach the engineers and those who seek professional knowledge in CFD.

ِDoing CFD projects will be faster and easier with our services. Call us for training in CFD applications and CFD packages. Our professional CFD engineers offer you professional consultation and technical supports for your academic CFD projects and industrial CFD projects. We offer you CFD learning, CFD project by ANSYS Fluent and ANSYS CFX, CFD consulting by ANSYS Fluent and ANSYS CFX, CFD service by ANSYS Fluent and ANSYS CFX, ANSYS Fluent and ANSYS CFX project, ANSYS Fluent and ANSYS CFX thesis, ANSYS Fluent and ANSYS CFX simulation, ANSYS Fluent and ANSYS CFX paper regeneration, ANSYS Fluent and ANSYS CFX academic project, ANSYS Fluent and ANSYS CFX industrial project, ANSYS Fluent, and ANSYS CFX research project, and low CFD Price. Moreover, we have years of experience in coordinating CFD projects. Therefore, we are ready to perform your CFD simulations in different engineering fields.

Reviews

There are no reviews yet.

Be the first to review “The Design – Analysis of a Whirl Wind Propeller Simulation | ANSYS Fluent”

Your email address will not be published.

error: Content is protected !!